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Abstract

An inverse modeling method was developed and tested for identifying possible biases
in emission inventories using satellite observations. The relationships between emis-
sion inputs and modeled ambient concentrations were estimated using sensitivities cal-
culated with the decoupled direct method in three dimensions (DDM-3D) implemented
within the framework of the Community Multiscale Air Quality (CMAQ) regional model.
As a case study to test the approach, the method was applied to regional ground-
level NO, emissions in the southeastern United States as constrained by the Scanning
Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satel-
lite derived observations of NO, column densities. A controlled “pseudodata” scenario
with a known solution was used to establish that the methodology can achieve the
correct solution, and the approach was then applied to a summer 2004 period where
the satellite data are available. The results indicate that emissions biases differ in ur-
ban and rural areas of the southeast. The method suggested slight downward (less
than 10%) adjustment to urban emissions, while rural region results were found to
be highly sensitive to NO, processes in the upper troposphere. As such, the bias
in the rural areas is likely not solely due to biases in the ground-level emissions. It
was found that CMAQ was unable to predict the significant level of NO, in the upper
troposphere that was observed during the NASA Intercontinental Chemical Transport
Experiment (INTEX) measurement campaign. The reasons for the underestimation
likely include combination of a lack of lightning emissions and a short modeled life-
time of NO, aloft. Therefore, the best correlation between satellite observations and
modeled NO, column densities, as well as comparison to ground-level observations
of NO,, was obtained from performing the inverse while accounting for the significant
presence of NO, in the upper troposphere not captured by the regional model.
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1 Introduction

Regional air quality modeling has been used to develop control strategies designed
to reduce levels of pollutants such as ozone and particulate matter. More recently,
results of regional models have been integrated into epidemiological studies that aim
to assess the health impacts of atmospheric pollutants (Knowlton et al., 2004). Both
of these applications rely on well quantified emission inputs. Emission inventories are
traditionally developed using a “bottom-up” approach that first estimates the levels of
activity by various pollutant producing sources, such as fossil fuel combustion by au-
tomobiles and the microbial activity in soils, and next, combines this information with
activity specific-emission factors. Emissions of nitrogen oxides (NO,=NO+NO,) are of
particular importance to estimate correctly. These compounds regulate the levels of
ozone in the troposphere, lead to formation of nitric acid, which can be an important
component of particulate matter, and have a substantial impact on the levels of the
hydroxyl radical that, in turn, determine the lifetime of many pollutants and greenhouse
gases. The uncertainty in the estimated emission levels of NO, has been proposed to
be as high as a factor of two (Hanna et al., 2001).

Inverse modeling offers a “top-down” approach to evaluating NO, emission invento-
ries; where emission rates are inferred by estimating possible changes that would result
in the best comparison between predicted concentrations and observable indicators.
While very few accurate surface observations are available for NO,, space-based ob-
servations of NO, columns offer a comparably rich dataset for inverse modeling stud-
ies. Retrieval algorithms for NO, column densities have been developed for several
satellite instruments including Global Ozone Monitoring Experiment (GOME), Scan-
ning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY),
and more recently Ozone Monitoring Instrument (OMI) (Martin et al., 2002; Richter and
Burrows, 2002; Beirle et al., 2003; Boersma et al., 2004; Bucsela et al., 20086). These
data have been used previously in inverse modeling of “top-down” inventories, but typi-
cally on the global scale (Martin et al., 2003; Muller and Stavrakou, 2005), and less fre-
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quently on the regional scale (Quelo et al., 2005; Konovalov et al., 2006). In this work,
a method was developed for using NO, column observations to check for biases in the
current emission inventories of NO, using Kalman filter inversion. Regional scale mod-
eling was performed using the Community Multiscale Air Quality (CMAQ) model (Byun
and Schere, 2006). The inverse was driven by direct sensitivities that provided the spa-
tial relationship between NO, emissions and NO, concentrations. Direct sensitivities
were calculated using the decoupled direct method in three dimensions (DDM-3D). It
is critical to resolve the spatial relationship between emissions and concentrations in
regional inverse modeling. On finer grid resolutions, transport lifetime can be shorter
than chemical lifetime, as compared to coarser resolutions of global models. Therefore,
DDM-3D was invaluable in this effort.

The inverse method was tested using a pseudodata scenario to evaluate the per-
formance for a system with a known solution. After satisfactory performance, it was
then applied to a summer-time episode in the southeastern United States using SCIA-
MACHY satellite observations of NO, column densities.

2 Method
2.1 Regional model and satellite observations

CMAQ (Byun and Schere, 20086) was used to simulate the concentrations of NO, as
well as other pollutants in a domain centered on the southeastern United States. The
36 km horizontal resolution domain with 14 vertical layers (Fig. 1) was nested within
a larger domain covering the entire continental US that provided the boundary condi-
tions. Meteorological fields were developed using the fifth generation mesoscale model
(MM5) version 3.6.3 (Grell et al., 1995), and the emissions inputs were the result of the
Sparse Matrix Operator Kernel Emissions (SMOKE) version 2.0 (US-EPA, 2004) pro-
cessing of the 2001 National Emissions Inventory (NEI) for use with the Statewide Air
Pollution Research Center (SAPRC99) gas-phase chemical mechanism (Carter, 2000).
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The emissions included data from point sources equipped with continuous emissions
monitoring systems (CEMs) that measure SO, and NO, emission rates and other pa-
rameters, mobile emissions processed by the Mobile6 model, and meteorologically
adjusted biogenic emissions from Biogenic Emission Inventory System (BEIS) 3.13 all
specific for the year 2004. A more detailed description of these emission inputs is
provided elsewhere (Gilliland et al., 2008).

Satellite observed NO, columns were obtained from SCIAMACHY (Bovensmann et
al., 1999) on board the European Space Agency Environmental Satellite (ENVISAT).
The data retrieval process is described in detail elsewhere (Martin et al., 2008). The
horizontal resolution of a SCIAMACHY footprint is 60 km by 30 km and it provides ob-
servations at approximately 16:00 UTC in this domain. For comparison, satellite col-
umn observations and CMAQ grid values were paired in time and space from 1 June
to 31 August 2004. The satellite column observations were scaled to the CMAQ grid
resolution using area weighted averaging (Fig. 2c, d). During this three month pe-
riod, satellite observations were available for five days on average (range of three to
ten days) over the modeling domain due to cloud events and satellite measurement
schedule.

The modeling domain was subdivided into ten source regions including six south-
eastern metropolitan areas of Atlanta, Birmingham, Chattanooga, Macon, Memphis,
and Nashville, as well as four larger rural areas approximately covering the states of
Alabama, Georgia, Mississippi, and Tennessee (Fig. 1). The geographical extent of
each metropolitan area was defined based on emission patterns.

A CMAQ-DDM-3D simulation for the summer months of 2004 provided the base-
case fields of NO, concentrations and gridded sensitivities to NO, emissions from each
predefined source region. The vertical layers were aggregated to obtain column NO,
values based on meteorological variables used to drive the simulation. Kalman filter
was then applied using the results at 16:00 UTC to maich with the time of satellite
overpass.
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2.2 Kalman filter

To date, several different inverse methods have been applied to adjust estimated emis-
sion rates of atmospheric pollutants based on observed data. These have included
Bayesian based techniques (Deguillaume et al., 2007), data assimilation (Mendoza-
Dominguez and Russell, 2000), and full matrix inversion such as the Kalman Filter
(Hartley and Prinn, 1993; Gilliland and Abbitt, 2001), which was applied here. Kalman
Filter is an optimization technique used to estimate discrete time series and states
that are governed by sets of linear differential equations (Rodgers, 2000). In cases
where the linearity assumptions are not always valid, such as atmospheric transport
and chemistry systems, the technique can be applied iteratively. It has been tested
previously for constraining a variety of regional emissions including those of carbon
monoxide (Mulholland and Seinfeld, 1995), ammonia (Gilliland et al., 2003), and iso-
prene (Chang et al., 1996). Kalman Filter is an attractive choice for this application
because it allows for weighting the solution based on the uncertainties of both obser-
vations and emission fields independently.

Full description of the Kalman Filter method is found elsewhere (Haas-Laursen et
al., 1996; Gilliland and Abbitt, 2001). Briefly, it evolves an emissions vector, £, ,
according to the following: '

Efur = Ec+ G @™ -7™). (1)
At iteration k+1, the emissions vector is altered based on the gain matrix, G, and

the difference between the vectors of observations, 7°°°, and modeled values, 7"
(the usual time subscripts are dropped for convenience, because only one time-step
is considered in this application). The gain matrix is defined in terms of the partial
derivatives of the change in concentration with respect to emissions, P, the covariance
of the error in the emissions field, C;, and the noise (including observation and model
uncertainties), N, such that:

G, = C,PT(PC,P” + N)™' 2)
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The covariance of error matrix also evolves with subsequent iterations according to:
Cis1 = €, - G,PC, (3)

A variety of approaches have been used to estimate the initial covariance of error
matrix, C,_,, depending on application of the technique. In this application, C,_, was
related to the estimate of the normalized uncertainty in the emission, Ug, according to
the following:

cmm = (UE,m . Em)z

(4)

UE,m+UE.n 'Em+En)2 (5)

Cmn.m,én = (0-1 ’ > 2

for each subscripted (m or n) element in the covariance of error matrix C. Similarly, the
noise matrix, N (Eq. 2) was initialized based on the estimated normalized uncertainties
in the observations, U,,s according to:

N, = Max [O.5v10‘5m0!ecules-cm'2. (Uobs’m-,rﬁ,bs)] (G).
Mool =00 (7)

The minimum error value of 0.5x10"® molecules cm™ is consistent with previous satel-
lite error estimates for NO, retrieval (Boersma et al., 2004) and was imposed to prevent
numerical instability. A detailed analysis of the dependence of the inverse on the as-
sumption of Ug and U, appears further.

2.3 Direct sensitivity analysis

To determine the relationship between emission rates from different source regions and
resulting concentrations (P in Eq. 2), several methods have been used in the past. The
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simplest and the most widely used approach is the finite difference method, where sen-
sitivities are determined through a “brute force” difference in the pollutant concentration
fields resulting from simulations of manually perturbed input parameters. While the fi-
nite difference method is intuitive and straightforward to implement, it comes with a few
disadvantages. It is often prone to numerical noise, dependent on the magnitude of the
perturbation due to the nonlinear nature pollutant responses to atmospheric process-
ing, and cumbersome to implement for more than a few perturbations. Other meth-
ods for calculating sensitivities focus on computing local derivatives about the nominal
value of the sensitivity parameter. These include Green'’s function method (Dougherty
et al., 1979; Cho et al., 1987), the decoupled direct method (Dunker, 1981; Dunker,
1984}, and the adjoint method (Koda and Seinfeld, 1982; Sandu et al., 2003). The
advantages of each of these depend largely on specific application, but the decoupled
direct method in three dimensions (DDM-3D) (Yang et al., 1997) is often the most com-
putationally efficient for calculating direct sensitivities over the entire domain for a large
number of input parameters simultaneously.

Sensitivity coefficients are defined as a change in pollutant concentrations C;(x, t) of
species /, in space X and time ¢, with respect to a perturbation in an input parameter
a;(x. 1), which relates to the unperturbed or nominal value A;(x, t) according to:

a;(x,f) = (1+Ag;)A;(x.1) = g;A;(x. 1), (8)

where g, is the applied scaling factor. To separate the dependence of the sensitivity
coefficients on the magnitude of a;(x, f) and to allow better opportunity for comparison,
they are normalized by A;(x, t). The resulting first-order semi-normalized (with units
identical to C;(x, t)) sensitivity coefficient S;(x. ) can then be described by:
0C;(x.t ac;(x,t ac;(x.t
S‘,'j(x,t) =A),'{x, F}L =Aj(x, r} J( } = ;( ) (9)
da;(x, 1) 3 (g;A;(x.1)) 9¢;
The decoupled direct method has been implemented and evaluated for several regional
air quality models including CAMx (Dunker et al., 2002; Koo et al., 2007) and CMAQ
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(Cohan et al., 2005; Napelenok et al., 2006) and has been shown to accurately pro-
duce sensitivities of gaseous and particulate species to input parameters that include
emission rate, initial/boundary conditions, and chemical reaction rates. In this work,
DDM-3D was used to spatially resolve the dependencies of pollutant concentration on
emissions from each of the predefined source regions.

2.4 Integrated iterative inverse system

Sensitivities of NO, column concentrations were calculated to emissions of NO, from
each source region and integrated into the Kalman Filter formulation according the
following (time subscripts are, again, dropped for convenience):

Sno, £, (%)
P(jx) = %
/

(10)

where matrix P (Eq. 2) is dimensioned by the number of source regions, all j, and
the number of horizontal grid cells contained in any source region, all x. The sensitivity
coefficient is the response of NO, to emission reductions in each of the source regions,
J/, normalized by the total emission rate in that source region, E;. The inverse was
constructed using each grid cell contained by the source regions as a separate element

of ?’bs, the spatially matched averaged satellite data as fmd . In order to overcome
the linearity assumptions in both the Kalman filter and the direct sensitivity calculations,
the inverse was calculated iteratively. The emissions field was adjusted according to
the results of the inverse and the process was repeated until the ratio of Ekﬂ and Ek
was different from 1.0 only by a predetermined error factor (Fig. 3). The emissions
within each source region were assumed to respond homogeneously to the applied
scaling factors resulting from inverse modeling.
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3 Pseudodata analysis

In order to evaluate the inverse method, a controlled pseudodata experiment was de-
signed for the modeling domain. The goal was to determine performance of the inverse
in a scenario where the solution is known. NO, ground level emissions in each source
region between the hours 0:00 and 16:00 UTC were aggregated to approximate emis-
sions that would contribute to concentrations of NO, observed by the satellite overpass
at approximately 16:00 UTC. The aggregated emissions were arbitrarily adjusted by
factors ranging between 0.3 and 2.0. The resulting emissions vector became the a
priori estimate for the inverse method. NO, column concentrations from the simulation

using these adjustments (y mm} were compared to NO, column concentrations in the

base-case, which acted as pseudo observations (,r_DbS}. The Kalman filter method was
then applied iteratively to recreate the base-case emissions.

As previously mentioned, Kalman filter requires an estimate of the initial covariance
of the error in the integrated emissions estimates, C, ;. In the pseudodata experiment,
this quantity was based on an estimate of the uncertainty in the emissions, Ug, accord-
ing to Eq. (4). The normalized uncertainty in emissions, Ug ; was assumed to be 2.0
for all source regions j allowing for large departures from a priori emissions estimates
during the first iteration. The details on the sensitivity of this assumption are discussed
later. Similarly, the noise matrix was based on the estimated uncertainties in the ob-
servations, U,y according to Eq. (5). Theoretically, the noise matrix, N, can account
for both errors in observations, as it does here, and also errors in the modeling sys-
tem. However, in the case of the pseudodata test and the subsequent applications to
satellite data, model uncertainties are assumed to be systematic and should have little

. bearing on the conclusions drawn from the application of the inverse. For the pseudo-

data test, uncertainty in “observations” does not exist, because the system is perfectly
controlled. Thus, the diagonals of the noise matrix, N, were set at the minimum value
of 0.5 (10" moleculescm™2)2. An important assumption in the development of this

method is the fact that the disagreement between satellite observations and model
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outputs comes primarily from the emissions inventory. While the noise matrix allows
the introduction of other errors {model errors, assumptions in satellite date retrieval,
etc.), it ultimately only limits how close to the observations the iterative solution ap-
proaches. The pseudodata exercise avoids all other uncertainties and investigates the
robustness of the method when this assumption is strictly correct. In the pseudodata
test, the discrepancies between “observations” and model results come only from the
artificially introduced errors in the emissions inventory.

In application of the inverse method to the pseudodata scenario, the base case NO,
emissions in each region were reproduced within a few iterations. Particularly encour-
aging is the fact that both large increases (“Georgia:" 2.0) and large decreases (“At-
lanta:” 0.3) in emissions were corrected efficiently. Consequently, the corresponding
NO, column concentrations were also reproduced well (Fig. 4).

The pseudodata analysis also offers opportunity to test the response of the inverse
to the assumptions in its parameters. Assumptions where made for two important pa-
rameters, Ug and U, (Egs. 4 and 5). For the pseudodata test, the uncertainty in
observations was set to the minimum value (Eq. 5a), while the uncertainty in the emis-
sions was set to be 2.0. To test how the system behaves for a full range of these values
would be computationally prohibitive. However, it is possible to test the response for
just first iteration of the Kalman Filter inverse with little requirement for CPU resources.
It was already observed that the system converges on the correct solution in only a
few iterations from starting with widely perturbed initial emission fields. The proximity
to the solution after one iteration should be indicative of the overall response to the
assumptions. Thus, the first iteration of the inverse was tested at a range of values
for both Ug and U,,s. As expected, larger uncertainties in emissions and lower uncer-
tainties in observations allow for larger adjustments to the emission fields (Fig. 5). At
the extreme high Ug and extreme low U, the adjustment is frequently overestimated.
In the case of the Atlanta source region, the emissions field required an adjustment
factor of 3.3 to arrive back at the base emissions from the pseudodata perturbations
(Table 1). However, factors higher than 4.0 were possible at extreme values of uncer-
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tainty assumptions. Further testing revealed that these overestimations were corrected
in subsequent iterations of the Kalman filter inverse.

The pseudodata case was also used to test the influence of the boundaries on the
solution of the inverse. Since the domain is fairly small, influence from emissions
outside the defined source regions, including boundary conditions, can be potentially
problematic. Therefore, the source regions were “padded” with a border region (Fig. 1).
Emissions from the border regions were assumed to not influence the defined source
regions significantly. This assumption, as well as the ability of the border region to pro-
vide substantial enough distance to negate boundary condition influences, was tested
using DDM-3D sensitivities. Sensitivities of NO, column densities to boundary condi-
tions of NO, and to emissions of NO, from the border region were calculated and com-
pared to the special distribution of sensitivities to emissions from the defined source
regions. It was found that both the border region and the boundary conditions had
minimal influences (Fig. 8). The border region had the highest impact in the “MS” re-
gion where it accounted for under 25% of the total sensitivity. In this same region, the
boundary conditions also had the largest influence where they accounted for up to 30%
of the total sensitivity in the southern portion of the region. Overall, the border region
provided reasonable separation to neglect any impacts from the boundaries.

4 Case study: surface NO, emissions in the southeast United States

After encouraging results of the pseudodata analysis, the inverse method was applied
to the southeastern domain using SCIAMACHY observations for June, July, and August
of 2004. The same emission source regions were used as in the pseudodata analy-
sis (Fig. 1) and the emissions were again aggregated between the hours of 0:00 and
16:00. As was mentioned previously, the 60 km by 30 km SCIAMACHY footprints were
averaged down to the 36 km by 36 km CMAQ grid. One of the major added complica-
tions in moving from a synthetic data test to an application with an independent dataset
is the much greater impact on results from uncertainty stemming from the model's
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ability to accurately reproduce natural conditions in the atmosphere. Regional trans-
port medels tend to under-predict NO, concentrations in the upper troposphere (Singh
et al., 2007) due to, in part, a lack of well quantified emissions there from sources
that include lightning NO (Hudman et al., 2007) and possibly incorrect estimates of
the NO, chemical lifetime at higher altitudes. The under-prediction is easily visible
from a comparison of model predictions with vertical NO, profiles obtained by aircraft
measurements (Fig. 7). When compared with the average NO, vertical concentration
profile estimated from aircraft measurements taken during the NASA Intercontinental
Chemical Transport Experiment (INTEX) (Singh et al., 2006; Bertram et al., 2007) over
the eastern United States in the summer of 2004, our simulations under-predict by
1.07x10"® molecules cm ™2 NO, in terms of column density (Fig. 7). This deficiency is
of similar magnitude that has been reported by Konovalov et al. (2008), who proposed
that the systematic negative bias of 8x10' cm™ between satellite observation and
their model simulation over Europe was largely due to upper tropospheric NO,. To
understand the sensitivity of the inverse solution to the upper layer NO, concentration
uncertainty, the inverse method using SCIAMACHY observations was performed for
two different modeling realizations: a case where the model was used directly (Fig. 2a,
b), and a case where the modeling NO, column results were increased by spatially
uniform 1.07x10"® molecules cm™ based on INTEX observations of the upper tropo-
sphere NO, concentrations during this time period (Fig. 2e, f).

As with the pseudodata analysis, only four iterations were necessary to obtain a
solution. The inverse results using the base model confirm what is evident from a cur-
sory examination of the comparison between observed and modeled vertical columns
of NO, (Fig. 2a, b). In the southeast, CMAQ predicts values that are too low in the
rural regions while values in the urban centers are too high compared to SCIAMACHY
observations. Accordingly, the inverse solution was to dramatically increase emissions
in the rural areas and to slightly decrease emissions in the urban areas (Table 2). As
a result of these adjustments, the correlation for the comparison between regional av-
eraged observed and modeled NO, columns improved from R?=0.68 for the a priori
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case to R2=0.89 (Fig. 8a). The inverse using INTEX adjusted modeling results indi-
cated that adding to the upper level background forced the emissions in most source
regions lower (Table 2). Only the “Chattancoga” region required higher than base NO,
emissions, because parts of northern Georgia are highly sensitive to emissions there
and still required upward adjustments, Furthermore, adding upper level NO, substan-
tially reduced the bias in the comparison and slightly increased the degree of correla-
tion (}-?‘2=0.93) (Fig. 8a). Compared to areas of high surface emission density, inverse
solution at rural areas is significantly more sensitive to upper layer NO, concentrations.
At rural locations, a large fraction of the column concentration is due to aloft emissions
and long-range transport and less is due to surface emissions.

As the pseudo-data test and this case study demonstrate, the method developed
here can improve the agreement between modeled and observed NO, column den-
sities. However, the discrepancy in model and observed concentrations can be due
to processes other than errors in emissions. As an independent check on the results
of the inverse application, NO, concentrations at four Southeastern Aerosol Research
and Characterization Study (SEARCH) sites (Hansen et al., 2003) located in the do-
main were compared to both a posteriori modeling simulations averaged over the day-
time concentrations for 1 June to 31 August 2004 (Fig. 8b). The INTEX corrected a
posteriori emission estimates improved the simulated NO, surface concentation at all
four surface monitoring sites. At the rural and suburban locations, the a posteriori emis-
sions without the INTEX correction degraded the quality of the simulation and caused
an overestimate of the surface NO, concentration. This finding further emphasizes the
need for an accurate upper-troposphere NO, simulation when applying this method to
locations with low surface emission rates.

5 Conclusions and discussion

The Kalman filter inversion approach outlined here is a promising methodology for
applying the increasingly rich dataset obtained by space-based measurements to re-
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gional air quality modeling. In the pseudodata analysis, the method algorithms and key
assumptions were tested under ideal conditions. Problems with uncertain observa-
tions, spatial coverage, and uncertain modeling results were largely eliminated. Under
such conditions, the method performed extremely well and reproduced correct emis-
sion fields and corresponding NO, concentrations in a few iterations. This suggests
that the method is theoretically sound.

One major obstacle of this and other inverse modeling efforts is the fact that the
system is often mathematically ill-posed or is not constrained sufficiently to provide a
unique and stable solution. However, this method offers some advantages over other
similar inverse modeling approaches. The use of direct sensitivities provides spatial
and temporal resolution of the contributions to concentrations at any receptor in the
domain from any and all source regions. Pollutant transport across source region has
been previously difficult to account for without direct sensitivities and often has been
assumed to be negligible. This assumption is not unreasonable at the global scale with
large source regions, but fails when finer spatial resolutions are introduced, because
the transport lifetime of NO,, is often shorter than the chemical lifetime at the resolution
of regional models. Similarly, sensitivity analysis also provides the opportunity to de-
termine the degree of influence on concentrations from transport outside the defined
source regions and from boundary conditions.

During the application to the southeastern United States a stable solution to the
inverse was obtained for both cases: base model and INTEX adjusted model. The
comparison of the results between the two cases suggests a much greater impact on
upper layer processes in rural areas where NO, concentrations aloft compose a larger
fraction of the total column. In both cases, the results suggest very drastic adjust-
ments to the emissions inventory in some source regions, for example “Macon” and
“GA”. While these results satisfy the mathematical model, which aims to minimize the
differences between satellite derived observations and the regional model, their un-
certainties should be explored further. Generally, in the rural areas, correct simulation
of the upper troposphere NO, concentration is essential, because ground sources of
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NO, are minimal. For urban areas, as ground level NO, emissions increase, the im-
portance of aloft processes decreases, and, in a relative sense, approaches the error
in the satellite product. However, in both low and high ground level source regions, the
adjusted emissions improved ground level concentrations of NO,, as confirmed by the
independent SEARCH observations.

Other factors, besides aloft sources influence the inverse results. In the “Macon”
source region, adjustments to the inventory are outside the specified uncertainty of the
emissions inventory (factor of two). There, the differences between satellite observa-
tions and model results are likely to be a factor of other uncertainties besides those
in the emissions inventory. These include insufficient spatial resolution, biases in the
retrieval, and the representation of NO, chemistry in CMAQ. All will be explored further
in the future applications of this method.

Finally, the results of the inverse application need to be interpreted in the context
of the emissions scenario. Only ground-level NO, emission fields were considered in
this study, under the assumption that elevated NO, come primarily from point sources
equipped with continuous emission monitoring (CEM) devices and much more cer-
tainty. Sources of ground-level NO, vary by region. For instance, the majority of bio-
genic NO, is emitted outside of the defined urban regions as NO from soil, while in
the urban centers, mobile emissions are more important. The analysis provided here
does not provide the breakdown of how each sector’'s emissions should be adjusted;
instead, the inverse was performed on the total. Sector specific adjustments are pos-
sible to obtain and will be explored in the future. Another complication from using this
approach of assigning emission quantities to source regions is the assumption that the
daily emission profile is correct. Temporal dependencies are possible with DDM-3D,
and will be explored further. :
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Table 1. Regional Emission Adjustment for the pseudodata scenario. This arbitrary factor was
applied to hourly emission rates in each region.

: Source Region™ Pseudodata Test
Adjustment Factor

Atlanta, GA 0.3
Birmingham, AL 1.8
Macon, GA 0.5
Memphis, TN 0.6
Nashville, TN 1.0
Chattanooga, TN 1.4
Mississippi 1.6
Alabama 0.7
Georgia 2.0
Tennessee 0.4

" Urban area emissions are not included in the larger encompassing regions.
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Table 2. Emission rates for each source region during the summer months (JJA) of 2004,

Source Region* apriori aposteriori a posteriori — INTEX

(tons/d) (tons/d) {tons/d})
Atlanta, GA 513 482 435
Birmingham, AL 202 182 138
Macon, GA 154 68 73
Memphis, TN 129 118 106
Nashville, TN 112 113 80
Chattanooga, TN 55 101 89
Mississippi 572 859 212
Alabama 852 1718 782
Georgia 574 1171 364
Tennessee 1425 2533 1389

* Urban area emissions are not included in the larger encompassing regions.
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Fig. 1. Modeling domain covering the southeastern United States. Source region definitions
are superimposed on a map of average surface layer NO, emissions at 16:00 UTC during
the summer months (JJA) of 2004. Source regions include urban areas of Atlanta, Birming-
ham, Chattanooga, Macon, Memphis, and Nashville and rural areas centered over Alabama,
Georgia, Mississippi, and Tennessee. A four-cell wide border surrounds the source regions to
minimize influence from the boundaries.
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Fig. 2. Total vertical NO, column as (a) and (b) simulated by CMAQ, (c) and (d) observed by
SCIAMACHY, and (e) and (f) simulated by CMAQ with upper-layer INTEX correction. The cor-
rection is a uniform increase of 1.07x10"® molecules cm ™ based on the discrepancy between
model predictions and measurements during the INTEX campaign of the upper troposphere.
All show summer 2004 averages of days and locations with SCIAMACHY coverage. White
areas represent regions with no SCIAMACHY observations during the simulation period.
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Fig. 3. Outline of the presented inverse method. The iterative process is used to overcome
nonlinearities in the relationship between NO, emissions and NO, concentrations. The con-
vergence criteria (£,,,=E,+¢£) can vary with application, but 0.001< |(£,,,—E,)/E,| was used
here.
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Fig. 4. Performance of the pseudodata analysis showing NO, column concentrations for (a)
arbitrary adjusted emissions scenario and (b) inverse corrected emissions scenario (after six
iterations), both compared to base case values (in 10'° molecules cm'z), and (c) the conver-
gence toward base emissions from the perturbed starting point. Results are shown for 1 August
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Fig. 5. Sensitivity to inverse model assumptions of U, and Ug calculated as the adjust-
ment factor to the emissions, £,,,/E, in the “Atlanta” source region resulting from varying
Ug and U, assumptions for k=0 in the pseudodata scenario. Larger uncertainties in emis-
sions and smaller uncertainties in observations allow for larger adjustments in this and other
source regions. The “Atlanta” source region requires an adjustment factor of 3,33 to return to
the pre-perturbed inventory (to overcome a 0.3 perturbation).
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Fig. 6. Fraction of total sensitivity of NO, column densities to (a) NO, emissions from the
“border” region (b) NO, boundary conditions. NO, sensitivities to emission of NO, from (c)
‘Atlanta”, (d) "GA”, (e) “Birmingham”, and (f) “AL" source regions are shown for compari-
son. The fraction for each grid cell as the ratio of the sensitivity from the source of interest
and the total sensitivity from all source regions and the boundary conditions is expressed as:
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Fig. 7. Vertical distribution of NO, concentrations observed by NASA INTEX DC-8 flights over
the eastern United States compared to model predictions matched in space and time. Error
bars denote 99% confidence interval of the mean, assuming that observations are drawn from
a normally distributed population. For more measurement details, see Bertram et al. (2007),
Supporting Online Material, Figure S6.
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Fig. 8. Results of the inverse analysis showing (a) regionally averaged comparison of NO,
column densities observed by SCIAMACY and modeled by CMAQ with and without the INTEX
correction, as well as the comparison at four ground-based SEARCH sites: Atlanta (JST),
Birmingham (BHM), suburban GA (YRK), and rural AL (CTR).
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